Necessary Conditions for Schatten Class Localization Operators
نویسندگان
چکیده
We study time-frequency localization operators of the form A12 a , where a is the symbol of the operator and φ1, φ2 are the analysis and synthesis windows, respectively. It is shown in [3] that a sufficient condition for A12 a ∈ Sp(L(R)), the Schatten class of order p, is that a belongs to the modulation space Mp,∞(R2d) and the window functions to the modulation space M1. Here we prove a partial converse: if A12 a ∈ Sp(L(R)) for every pair of window functions φ1, φ2 ∈ S(R2d) with a uniform norm estimate, then the corresponding symbol a must belong to the modulation spaceMp,∞(R2d). In this sense, modulation spaces are optimal for the study of localization operators. The main ingredients in our proofs are frame theory and Gabor frames. For p =∞ and p = 2, we recapture the results in [3], which were obtained by different methods.
منابع مشابه
Localization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملOn the two-wavelet localization operators on homogeneous spaces with relatively invariant measures
In the present paper, we introduce the two-wavelet localization operator for the square integrable representation of a homogeneous space with respect to a relatively invariant measure. We show that it is a bounded linear operator. We investigate some properties of the two-wavelet localization operator and show that it is a compact operator and is contained in a...
متن کاملComposition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملAn Interesting Class of Operators with Unusual Schatten–von Neumann Behavior
We consider the class of integral operators Qφ on L (R+) of the form (Qφf)(x) = ∫ ∞ 0 φ(max{x, y})f(y)dy. We discuss necessary and sufficient conditions on φ to insure that Qφ is bounded, compact, or in the Schatten–von Neumann class Sp, 1 < p < ∞. We also give necessary and sufficient conditions for Qφ to be a finite rank operator. However, there is a kind of cut-off at p = 1, and for membersh...
متن کاملAn Interesting Class of Operators with Unusual Schatten–von Neumann Behavior
We consider the class of integral operators Qφ on L (R+) of the form (Qφf)(x) = ∫ ∞ 0 φ(max{x, y})f(y)dy. We discuss necessary and sufficient conditions on φ to insure that Qφ is bounded, compact, or in the Schatten–von Neumann class Sp, 1 < p < ∞. We also give necessary and sufficient conditions for Qφ to be a finite rank operator. However, there is a kind of cut-off at p = 1, and for membersh...
متن کامل